The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
نویسندگان
چکیده
We compared levels of the major organic osmolytes in the muscle of elasmobranchs, including the methylamines trimethylamine oxide (TMAO), betaine and sarcosine as well as the beta-amino acids taurine and beta-alanine, and the activities of enzymes of methylamine synthesis (betaine and TMAO) in species with a wide range of urea contents. Four marine, a euryhaline in freshwater (Dasyatis sabina), and two freshwater species, one that accumulates urea (Himantura signifer) and one that does not (Potamotrygon motoro), were analyzed. Urea contents in muscle ranged from 229-352 micromol g-1 in marine species to 2.0 micromol g-1 in P. motoro. Marine elasmobranchs preferentially accumulate methylamines, possibly to counteract urea effects on macromolecules, whereas the freshwater species with lower urea levels accumulate the beta-amino acid taurine as the major non-urea osmolyte. A strong correlation (r2=0.84, P<0.001) with a slope of 0.40 was found between muscle urea content and the combined total methylamines plus total beta-amino acids, supporting the hypothesis that ;non-urea' osmolytes are specifically maintained at an approximately 2:1 ratio with urea in the muscle of elasmobranchs. All species examined had measurable synthetic capacity for betaine in the liver but only one species had detectable TMAO synthetic capacity. We propose a phylogenetic explanation for the distribution of TMAO synthesis in elasmobranchs and suggest that activation of liver betaine aldehyde dehydrogenase, relative to choline dehydrogenase, coincides with betaine accumulation in elasmobranchs. The latter relationship may be important in maintaining methylamine levels during periods of low dietary TMAO intake for species lacking TMAO synthesis.
منابع مشابه
Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes.
Intracellular fluids of marine elasmobranchs (sharks, skates and rays), holocephalans and the coelacanth contain urea at concentrations averaging 0.4m, high enough to significantly affect the structural and functional properties of many proteins. Also present in the cells of these fishes are a family of methylamine compounds, largely trimethylamine N-oxide with some betaine and sarcosine, and c...
متن کاملDo Australian desert frogs co-accumulate counteracting solutes with urea during aestivation?
Australian desert frogs of the genera Neobatrachus, Cyclorana and Heleioporus experience significant dehydration, and iono- and osmoconcentration, during aestivation in the laboratory and accumulate substantial amounts of urea (100-200 mmol)(l-1). We expected a priori that aestivating frogs probably would not need to accumulate balancing osmolytes but would accumulate trimethylamine oxide (TMAO...
متن کاملMetabolic organization of freshwater, euryhaline, and marine elasmobranchs: implications for the evolution of energy metabolism in sharks and rays.
To test the hypothesis that the preference for ketone bodies rather than lipids as oxidative fuel in elasmobranchs evolved in response to the appearance of urea-based osmoregulation, we measured total non-esterified fatty acids (NEFA) in plasma as well as maximal activities of enzymes of intermediary metabolism in tissues from marine and freshwater elasmobranchs, including: the river stingray P...
متن کاملRole of Urea and Methylamines in Buoyancy of Elasmobranchs
The possible role of urea and trimethylamine oxide (TMAO) in providing positive buoyancy has been examined for elasmobranch fishes. TMAO has a considerably lower density than an equimolar solution of urea, and solutions of both TMAO and urea are considerably less dense than equimolar solutions of most other body fluid solutes. The body fluid composition of three elasmobranchs, the whiskery shar...
متن کاملOsmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists
This article provides a broad review of osmoregulation in elasmobranchs for non-specialists, focusing on recent advances. Marine and euryhaline elasmobranchs in seawater regulate urea and other body fluid solutes (trimethylamine oxide (TMAO), Naþ, Cl ) such that they remain hyper-osmotic to their environment. Salt secretions of the rectal gland and excretions in the urine compensate for continu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 5 شماره
صفحات -
تاریخ انتشار 2006